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Introduction

A koan is an enigmatic, and often senseless, question posed as an aid to med-
itation in Zen Buddhism. By “chi-square”, we mean Pearson’s general scheme
of a p-value, or tail, statistic that is constructed as a sum of independent ran-
dom variables, each of which is the square of a normal deviate N(0, 1) (or at
least approximately so). Such a statistic is distributed according to the familiar
χ2

I distribution, with I degress of freedom, whose tail values are tabulated or
readily computable.

Chi-square tests are used to distinguish between two samples, under the null
hypothesis that they are drawn from the same distribution. Generally, each
sample has a number of subsamples or “bins” (i = 1, . . . , I) that are more or
less independent, and the chi-square statistic is a sum over the bins, with one
squared normal deviate (∼ χ2

1) obtained from each bin. If there are a small
number of linear constraints among the values in the bins, so that they are not
independent, then it is well known [6] that the I in χ2

I is reduced by the number
of constraints, with the general scheme otherwise unchanged.

In this note, we are interested in the particular regime where the number
of bins I is very large, and where the data in the bins are integer numbers of
counts, mi for the first sample and ni for the second. Further, our interest is
when the total numbers of counts is much larger than the number in any single
bin, i.e.,

M ≡
∑

i

mi ≫ mj , N ≡
∑

i

ni ≫ nk ∀j, k (1)

We have no restriction on whether the mi’s and ni’s are small or large, or
whether they are the same order of magnitude as i varies. This regime of
interest occurs in many bioformatics applications, where the counts may be
(e.g.) the numbers of occurrences of every possible nucleotide subsequence of a
given length (hence large I) in a large corpus of genomic sequences (hence large
M and N). However, some subsequences may be rare in the corpus (hence no
restriction on mi and ni).

We define r, 0 < r < 1, such that

M = r(M + N), N = (1 − r)(M + N) (2)
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so that the sample sizes M and N are in the proportions r : 1 − r. We are
interested both in the case where r is . 1 and in the case where r ≪ 1. In the
former case, we may be comparing two corpuses. In the latter case, we may be
comparing a single gene to a much larger corpus of genes.

In the regime described, we can state the null hypothesis regarding mi and
ni precisely. From a single distribution, we, in effect, drew M + N counts, and
mi + ni were found to be in bin i. Since M and N are large, it is irrelevant
whether we view the value of r as exact or as a statistical estimator (i.e., whether
M and N are fixed by the experimental design or are random variables). In
either case r is effectively known. Thus the null hypothesis, independently for
each i, is that

mi ∼ Binomial(mi + ni, r) (3)

Hereafter, we denote the (frequently occuring) binomial probability distribution
by

bin(m|t, r) =

(
t

m

)
rm(1 − r)t−m (4)

Binomial-Derived Chi-Squares Are Not Exact

It is well known (e.g., [4]) that the conventional formula given for the two-sample
chi-square statistic is not exact in the limit of small numbers of counts. In brief,
dropping for now the index i, and defining t ≡ m+n, we form a statistic x from
the difference between what is observed and its expectation,

x ≡ (1 − r)m + rn = m − rt (5)

The relevant moments of x are

〈x〉 =
∑

m

(m − rt) bin(m|t, r) = 0

〈x2〉 =
∑

m

(m − rt)2 bin(m|t, r) = r(1 − r)t

〈x4〉 =
∑

m

(m − rt)4 bin(m|t, r) = r(1 − r)t[3r(1 − r)(t − 2) + 1]

(6)

Since E(χ2
I) = I, the chi-square contribution for one bin is obtained by squaring

x and normalizing it appropriately,

χ̂2 ≡ x2

r(1 − r)t
(7)

Equation (7) is the formula conventionally given (e.g., [10]) for the two-sample
binned chi-square test with unequal sample sizes, and is originally due to Pear-
son [8].

If x is normally distributed, then equation (7) is exactly ∼ χ2
1, as desired.

The premise becomes true in the limit of m and n both large, in which case

Binomial(t, r) → N(rt,
√

r(1 − r)t) (8)
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In our regime of interest I is large, so χ2
I is also approximately normal,

χ2
I → N(I,

√
2I) (9)

Therefore, even if m and n are not large, we can obtain a chi-square distributed

statistic via the central limit theorem, if only χ̂2 has the desired expectation
value (= 1) and variance (= 2). Does it? The expectation value is correct by
the construction of equation (7). But the variance, from equation (6), is

Var(χ̂2) =
2r(1 − r)(t − 3) + 1

r(1 − r)t
(10)

which becomes 2 only in the limit of large rt and (1−r)t. Thus, when some mi’s

or ni’s are small, the sum of the individual χ̂2’s is not χ2
I distributed, even in

the limit of large I, because the expectation value and variance are discrepant
with respect to one another.

It is not hard to construct corrected chi-square statistics, for example by

an affine scaling of χ̂2 (e.g., Lucy’s Y 2 and Z2 statistics [5]), possibly allowing
also a correction to the number of degrees of freedom I, that restores exact
agreement with χ2

I , at least in the normal limit of equation (9). These are
however post hoc fixes, and are not principled ways of dealing with the discrete
binomial distribution of mi and ni when either is small.

A more straightforward (but not much different) approach might be simply

to sum χ̂2, and also equation (10) over bins when the data are analyzed, giv-
ing values (say) χ2 and V . One would then obtain p-values from the normal
distribution N(χ2,

√
V ). Below, we will refer to this as a “variance-by-hand”

method.
Other proposed fixes, such as the likelihood ratio test [1], modified Neyman

χ2 [2], and chi-square-gamma statistic [7], seek not to restore an exact χ2
I dis-

tribution, but to mitigate the effect of small number bins in other ways. These
must also be viewed as ad hoc to varying degrees.

Chi-Square Is Not Optimal When Only a Few Bins Are

Causally Different

There are deficiencies in chi-square that are unrelated to the issues of small
number counts. One such is the power of the method to detect differences
between two populations that may be causal in only a small number of bins.

As an example, consider the case where the two samples are first drawn
from the same distribution, but are then perturbed in just a fraction f of the I
bins by a change δr in the probability r0. For simplicity, take M = N so that
r0 = 1/2 before the perturbation, and suppose the number of counts in every
bin is initially about n0.

Can the chi-square test detect this perturbation? In order of magnitude, the
change in chi-square is

δχ2 ∼ (fI)
(n0δr)

2

n0

(11)
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which is detectable if it is greater than a few ×
√

I, implying

δr &
1

(fn0)1/2I1/4
(12)

We see that the detectability gets better (δr gets smaller) as f increases, as it
intuitively should.

A useful comparison, however, is with the “best bin” strategy of looking
for the single most discrepant bin, and then applying a multiple hypothesis
correction to the resulting p-value. In the normal limit, the maximum t-value
seen will be

T ∼ δrn0√
n0

= δrn0 (13)

We now equate the implied tail probability (in asymptotic approximation for
the normal distribution) to α/I, where α is the desired significance level. Up to
logarithmic corrections, this gives the order of magnitude result,

δr &
1√
n0

√

ln

(
I

α

)
(14)

Comparing equations (12) and (14), we see that best-bin beats chi-square when
f . I−1/2. In the extreme case of f = 1/I, best-bin can detect a signal
that is a factor O(I1/4) smaller in counts. While the fourth-root dependence is
modest, the effect can be devastating when, as we contemplate for bioinformatic
applications, I is as large as ∼ 109.

Bayes Factor Log Odds Approach

One might hope that an approach based on Bayes factors and using exact bi-
nomial probabilities rather than normal approximations might fix one or both
of the above highlighted problems with chi-square.

Focussing on one bin, let H0 be the hypothesis that the distributions are the
same, that is, in the expected ratio of r : (1 − r); and let H1 be the hypothesis
that they are different, that is, have some other ratio s : (1− s). The odds ratio
is the ratio of the data likelihoods, integrating over the unknown value of s, and
with appropriate priors.

P (H0|m, n)

P (H1|m, n)
=

P (H0)

P (H1)

bin(m|t, r)∫
bin(m|t, s)p(s)ds

(15)

Taking the simplest noninformative prior p(s) = 1, and taking the logarithm,
gives the result

lnLi =
∑

i

ln(mi + ni + 1) + ln bin(mi|mi + ni, r) + Wi (16)

where the Wi’s parametrize the priors P (H0) and P (H1) as any convenient set
of values that sum to lnP (H0) − lnP (H1).
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It is not hard to see that, in the limit of large mi and ni, −2 lnLi is basically
equivalent to chi-square. In particular, with the notation of equation (7),

−2 lnL =
∑

i

χ̂2 + {ln[2πr(1 − r)] − ln(mi + ni) − 2Wi} (17)

If we choose each prior Wi so as to make the term in braces equal to −T
√

2/I,
then the equivalence to chi-square is exact, with the log-odds decision point of
zero corresponding to a chi-square decision point with a t-value of T . This
data-length dependendent prior may seem peculiar, but it is necessary if one
wants Bayesian results that can equally well be interpreted as frequentist p-
value (tail) tests, a desirable feature. The need for such priors is related to
“Lindley’s Paradox” [12] and has been discussed at greater length elsewhere
[11]. Henceforth we refer to such priors as “p-value priors”.

What we see is that the above Bayes log-odds method has exactly the same
issue as chi-square regarding the detectability of a signal that is confined to a
small number of bins. For the issue regarding small number counts, the Bayes
log-odds method does avoid inappropriate use of equation (7) by using exact
binomial probabilities. But the penalty is that, in order to choose p-value priors
Wi that correspond to a specified p-value, one must do both “variance-by-hand”
and “expectation-by-hand” calculations on equation (16). (Below, we will see
that these calculations are in fact not computationally difficult.)

Bayes Factor with a Prior on the Probability of Causal

Differences

Bayesian methods have a tendency to answer the question you asked, not the
question that you meant to ask. The problem with the approach in the previous
section is that the alternative hypothesis H1 gave all bins their own, different,
values of s. If we frame our alternative hypotheses with greater care, we can
get a better answer to the question that we meant to ask.

Consider now the large number of alternative hypotheses Hf ,v,s indexed by
the vector quantities f , v, and s, each having I components. The value fi ∈ [0, 1]
is the probability that bin i is causally different in the two samples. The binary
value vi ∈ {0, 1} indicates by a 1 value that a component is actually different,
or by a 0 value that it is not. The component si is the value of the s-probability
(as in the denominator of equation 15 when vi = 1, or r, when vi = 0.

We need a mixture prior on f that gives finite weight to the hypothesis that
f = 0 (as a vector), meaning that no bins are causally different. We can write
this as

P (f) = w
∏

i

δ(fi) + (1 − w)
∏

i

p(fi) (18)

where p(fi) is now the “reduced” prior on 0 < fi ≤ 1. We will see that a sensible
choice for p(f) is important. As for priors on all the si’s (when vi = 1), we will
take these to be uniform in [0, 1].
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This setup, using a vector of fi’s instead of a single common value f , is the
“variant” method (due to Kochanek) described in §3.4 of [9]. In that paper,
the justification for using a common value of f was that the individual vector
components represented experiments drawn from (at least notionally) a com-
mon standard of practice. Thus, evidence that one experiment was “bad” was
relevant evidence about that common standard. For the bioinformatics appli-
cations we have in mind here, on the other hand, a difference of counts for one
causal feature says nothing about whether other causal features ought to exist.

We now calculate,

P (Hf ,v,s |m,n) ∝ P (m,n | f ,v, s)P (f)P (v|f)P (s|f ,v)

=

[
∏

i:vi=0

(1 − fi)bin(mi|ti, r)
] [

∏

i:vi=1

fi bin(mi|ti, si)

]

×
[
w
∏

i

δ(fi) + (1 − w)
∏

i

p(fi)

]
(19)

Here we have used the uniform priors on the si’s, and also that P (v|f) is the
product of a factor f for each vi = 1 and a factor (1 − f) for each vi = 0.

We now marginalize (integrate) over the nuisance variables si, using

∫
bin(m|t, s)ds = (t + 1)−1 (independent of m) (20)

Next, we further marginalize by summing over all 2I possible v’s, which can be
done by inspection as in [9] (cf. [3]). The result is a posterior distribution on f

alone:

P (f |m,n) ∝
∏

i

[
(1 − fi)bin(mi|ti, r) +

fi

ti + 1

]

×
[
w
∏

i

δ(fi) + (1 − w)
∏

i

p(fi)

] (21)

Integrating respectively over an infinitesimal region near f = 0 and the rest
of dI

f (each fi from 0 to 1) gives the odds ratio

P (f = 0)

P (f 6= 0)
=

(
w

1 − w

) ∏
i bin(mi|ti, r)∏

i

[
(1 − f)bin(mi|ti, r) + f/(ti + 1)

] (22)

where

f =

∫ 1

0

p(fi) fi dfi (23)

which is independent of i because we will take the same prior for all the fi’s.
How shall we choose p(f) and hence f? A natural choice is that which gives

equal prior probability to every logarithmic range of f from 1/I (signal in a
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single bin) to 1 (signal in all bins, as assumed by chi square tests). This gives

f =
1

ln I

(
1 − 1

I

)
≈ 1

ln I
(24)

Equation (22) implies the log-odds formula

lnL =
∑

i

{ln bin(mi|mi + ni, r)

− ln

[
(1 − f)bin(mi|mi + ni, r) +

f

mi + ni + 1

]}
+ W

(25)

where W ’s will be chosen to be a p-value prior (see discussion following equation
16). (W is just a reparametrization of w.) Equation (25) is the main analytic
result of this paper. Note that it is equivalent to equation (16) when f = 1.

It is informative to see how equation (25) works qualitatively when f is
small: If a bin has

bin(mi|mi + ni, r) ≫
f

mi + ni + 1
(26)

Then a small positive amount, about f , is added to the log odds score (in favor of
the null hypothesis). If the inequality is strongly the other way, then a possibly
much larger value, ∼ ln f/[(ti + 1)bin(mi|ti, r)] is instead subtracted (in favor
of that bin’s being causally different). In other words, the upside evidence is
limited, since it generally reflects only the expected large fraction of not-different
bins, while the downside evidence is (nearly) unlimited, as it should be, since it
must be sensitive to a large signal from a small number of bins.

Calculation of the p-value Priors

If we write

Qi ≡ ln bin(mi|ti, r) − ln

[
(1 − f)bin(mi|ti, r) +

f

ti + 1

]

lnL =
∑

i

Qi + Wi

(27)

then, to make zero log odds equivalent to a one-sided normal t-value of T , we
must have 〈

∑

i

Qi

〉
+ W = T

√√√√Var

(
∑

i

Qi

)
(28)

implying

W = −
∑

i

〈Qi〉 + T

√∑

i

Var(Qi)

= −
∑

i

G1 + T

√∑

i

(G2 − G2
1)

(29)
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Here G1,2 denotes the moments of Q over the binomial distribution,

G1,2(r, t) =

t∑

m=0

bin(m|t, r)[Qi(m, t, r)]1,2 (30)

These are not difficult to calculate numerically: for small m (< 40, say), the
direct sum over m can be organized to have only a few updating operations
per term in the sum, while for larger m, bin(m|t, r) can be approximated by a
Gaussian, and Gauss-Hermite integration can be then applied. These calcula-
tions, yielding Wi, are done for every data set and every value of i.

Bayes Factor Results

The figure shows results for the minimum detectable δr when a fraction f bins
are perturbed. Here I = 105 and n0 = 104; for other values the shapes of the
curves are nearly identical, except for the scalings implied by equations (12) and
(14). The blue curves are labeled by the prior f . (For f = 1, the blue curve
falls exactly on the χ2 curve.)

Perhaps disappointingly, there is no single value of f that does better than
both chi-square and best-bin. Nor does any value beat a combination of chi-
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square and best-bin (including the multiple hypothesis correction for two tests)
by more than a factor of 0.6 in minimum detectable δr.

A Better Tail Test

As disappointed Bayesians, we turn for solace back to a conventional frequentist
approach. We will fix chi-square’s deficiencies essentially by brute force.

First, we fix the problem of small mi or ni. For each i, we form the quantity

ui ≡ bincdf(r, mi + ni, mi) + ran(0, 1)bin(r, mi + ni, mi) (31)

Here bincdf is the exact cumulative distribution function of the binomial distri-
bution (which is readily calculable as an incomplete beta function), and ran is
a uniform random deviate. The additional randomization is needed to convert
the “steps” of the binomial’s cdf into an exactly uniform p-value (in the case of
the null hypothesis).

Second, because in the case of an actual signal both tails will be overpopu-
lated, we “fold” the values ui so that the two tails are both on the left. This
transformation

ui → 2min(ui, 1 − ui) (32)

exactly preserves the uniformity of the ui’s in the null hypothesis.
Third, we sort the ui’s.
Fourth: In the null hypothesis, the value of the (folded and sorted) quantity

ui is beta distributed,
ui ∼ Beta(i, I − i + 1) (33)

with expectation and variance

〈ui〉 =
i

I + 1
, Var(ui) =

i(I − i + 1)

(I + 1)2(I + 2)
(34)

For any fixed i, this suggests the use of the t-value statistic

si ≡
(i − (I + 1)ui)

√
I + 2√

i(I − i + 1)
(35)

For any i, a large positive value of si indicates overpopulated tails in the binomial
distributions for the i “most extreme” bins.

Fifth (ideal case), we take as our test statistic

S1,I ≡ max
1≤i≤I

si (36)

This fixes by brute force the chi-square deficiency of insensitivity to a signal
in only a few bins, since every i’s t-value now gets an equal chance. The only
problem with this is that its distribution (or quantile points) in the null distri-
bution is hard to calculate. Furthermore, most values of i are irrelevant, since
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successive si’s are highly correlated (correlation distance ∼ i). We therefore
instead turn to. . .

Fifth (actual case),
S1.05,I ≡ max

i∈seq
si (37)

where
seq ≡ 1, 2, 3, . . . , i,max(i + 1, 1.05i), . . . (while ≤ I) (38)

The quantile points of S1.05,I are readily computable by simulation, because
we can use Beta deviates to jump forward to arbitrary values of i. Thus, each
simulation requires only O(ln I) operations instead of O(I). We have done 105

simulations for each of various values of I between 103 and 109. The resulting
critical values S1.05,I,p are adquately fit by a smooth function of log10I and
(− ln p)1/2, as shown in the following figure,
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We refer to this test as the “S-max test”.

Results for the S-max Test

These are harder simulations, so we’ll do them sparsely and allow some scatter.
We also compute chi-square and best-bin for the same simulations as a check.
The results (same format as figure ) are:

Gosh! Not at all what we wanted.
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Summary and Advice

• Chi-square is not exact for small mi and ni. The best way to fix it is
probably to compute, for each i, an exact t-value and then square it.
You do this by inverting the binomial to an exact uniform (using the
randomization trick above), then taking the inverse cdf of the normal
N(0, 1). This guarantees exact chi-square probabilities for each bin, and
is not an excessive amount of computation per bin.

• Chi-square lacks power when the signal is in a small number of bins.
Despite the heroic efforts above, no fix for this seems better than the
best-bin test. Best-bin works surprisingly well, even when the signal is
in as many as I1/2 bins. The exact test is: Compare the largest squared
t-value obtained as above to the χ2

1 distribution, and require a p-value of
α/I, where α is the desired significance. This takes basically no time at
all, and adds just a couple of lines to the chi-square calculation.

• A single test combining both chi-square and best-bin is to take the min-
imum of the two, requiring of each a significance level α/2. (That is,
multiply the smaller p-value by 2.)
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